Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 657: 124160, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38663642

RESUMEN

Addressing the pervasive issue of bacteria and biofilm infections is crucial in the development of advanced antifouling wound dressings. In this study, a novel wound healing treatment using sulfobetaine (SBMA) decorated electrospun fibrous membrane based on polycaprolactone (PCL)/nitric oxide (NO) donors was developed. The fabrication involved a dual strategy, first integrating NO donors into mesoporous polydopamine (MPDA) and complexed with PCL/PEI to electrospin nanofibers. The fibrous membrane exhibited a potent antibacterial response upon irradiation at 808 nm, owing to a combination of NO and photothermal effect that effectively targets bacteria and disrupts biofilms. Surface functionalization of the membrane with PEI allowed for the attachment of SBMA via Michael addition, fabricating a zwitterionic surface, which significantly hinders protein adsorption and reduces biofilm formation on the wound dressing. In vitro and in vivo assessments confirmed the rapid bactericidal capabilities and its efficacy in biofilm eradication. Combining photothermal activity, targeted NO release and antifouling surface, this multifaceted wound dressing addresses key challenges in bacterial infection management and biofilm eradication, promoting efficient wound healing.

2.
Eur J Pharm Biopharm ; 190: 284-293, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37532638

RESUMEN

Artesunate (ART) has potent anticancer activity but it suffers from poor stability and low bioavailability in vivo due to the special endoperoxide moiety in the molecules. In this work, we fabricated programmable enzyme/reactive oxygen species (ROS) responsive ART complex carriers with size and charge adaptive regulation in order to improve stability and overcome biochemical hurdles of solid tumor. The complex carries (ART/AA-PAMAM@HA) were created by electrostatic interaction between dendrimer-ART/arachidonic acid (AA) (ART/AA-PAMAM) and hyaluronic acid (HA), which can proactively penetrate deeply into tumors and selective drug release. Specifically, ART induced Fenton reaction and produced a mass of ROS and lipid peroxides (LPO), leading to the depressing of GSH level and glutathione peroxidase 4 (GPX4) activity. Meanwhile, exogenous AA further promoted the accumulation of LPO by cascade regulating ferroptosis pathway. In the anti-tumor efficacy in vivo, the tumor inhibition ratio was achieved to 46.92%. This work shows a new anti-tumor strategy triggering ferroptosis via regulating redox homeostasis.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Artesunato/farmacología , Especies Reactivas de Oxígeno , Disponibilidad Biológica , Ácido Hialurónico , Peróxidos Lipídicos
3.
Biomater Adv ; 151: 213451, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37150081

RESUMEN

Indocyanine green (ICG) has been employed in medical diagnostics due to its superior photophysical characteristics. However, these advantages are offset by its quick body clearance and inferior photo-stability. In this work, programmable prodrug carriers for chemotherapy/PDT/PTT against nasopharyngeal carcinoma (NPC) were created in order to increase photo-stability and get around biochemical hurdles. The programmable prodrug carriers (PEG-PLA@DIT-PAMAM) that proactively penetrated deeply into NPC tumors and produced the deep phototherapy and selective drug release under laser irradiation was created by dendrimer-DOX/ICG/TPP (DIT-PAMAM) and PEGylated poly (α-lipoic acid) (PLA) copolymer. Long circulation times and minimal toxicity to mammalian cells are two benefits of PEG-coated carriers. The overexpressed GSH on the tumor cell or vascular endothelial cell of the NPC disintegrated the PEG-g-PLA chains and released the DIT-PAMAM nanoparticles after the carriers had reached the NPC tumor periphery. Small, positively charged DIT-PAMAM nanoparticles may penetrate tumors effectively and remain inside tumor for an extended period of time. In addition, the induced ROS cleaved the thioketal linkers for both DOX and nanoparticles and product hyperthermia (PTT) to kill cancer cells under laser irradiation, facilitating faster diffusion of nanoparticles and more effective tumor penetration with a programmable publication of DOX. The programmable prodrug carries showed high photo-stability high photo-stability, which enabled very effective PDT, PTT, and tumor-specific DOX release. With the goal of combining the effects of chemotherapy, PDT, and PTT against NPC, this research showed the great efficacy of programmable prodrug carriers.


Asunto(s)
Hipertermia Inducida , Neoplasias Nasofaríngeas , Profármacos , Animales , Profármacos/farmacología , Profármacos/uso terapéutico , Carcinoma Nasofaríngeo/tratamiento farmacológico , Neoplasias Nasofaríngeas/tratamiento farmacológico , Poliésteres , Mamíferos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...